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How Many People are Able to Operate an EEG-Based
Brain-Computer Interface (BCI)?

C. Guger, G. Edlinger, W. Harkam, I. Niedermayer, and
G. Pfurtscheller

Abstract—Ninety-nine healthy people participated in a brain–computer
interface (BCI) field study conducted at an exposition held in Graz, Austria.
Each subject spent 20–30 min on a two-session BCI investigation. The first
session consisted of 40 trials conducted without feedback. Then, a subject-
specific classifier was set up to provide the subject with feedback, and the
second session—40 trials in which the subject had to control a horizontal
bar on a computer screen—was conducted. Subjects were instructed to
imagine a right-hand movement or a foot movement after a cue stimulus de-
pending on the direction of an arrow. Bipolar electrodes were mounted over
the right-hand representation area and over the foot representation area.
Classification results achieved with 1) an adaptive autoregressive model
(39 subjects) and 2) band power estimation (60 subjects) are presented.
Roughly 93% of the subjects were able to achieve classification accuracy
above 60% after two sessions of training.

Index Terms—Brain–computer interface (BCI), electroencephalo-
gram (EEG), event-related desynchronization (ERD), motor imagery,
rehabilitation.

I. INTRODUCTION

An electroencephalogram (EEG)-based brain–computer interface
(BCI) creates a new communication channel between the human brain
and the computer [1]–[3]. This channel may provide patients who
suffer from severe motor impairments (e.g. late-stage amyotrophic
lateral sclerosis (ALS), severe cerebral palsy, head trauma, and
spinal injuries) with an alternative form of communication, where the
interaction between brain and computer is realized in real time.

Currently, more than 20 laboratories are working on communica-
tion channels between the brain and the computer [4], exploring pos-
sible BCI input signals that include evoked potentials [5], slow cortical
potentials (SCPs) [6], and oscillatory components [3], [7], [8]. Most
studies have been conducted with small subject populations (1–13),
and data have mainly been used to develop systems that are highly op-
timized to the subjects participating in the studies. Subjects’ ability to
control a BCI vary greatly, however, and some subjects have been ex-
cluded from further investigation due to their inability to control the
BCI in early training [4].

One of the most successful BCI strategies relies on the subjects’
ability to learn to alter the mu and central-beta components of the
EEG at will. This method has resulted in accuracies of 80%–95% for
one-dimensional (1-D) cursor-control tasks. Wolpaw and McFarland
have shown that healthy subjects and spinal-cord-injury patients
usually need several months to develop high-accuracy cursor control
(i.e.,> 90%) using mu- and beta-frequency components [2], [7].
Birbaumer’s group also reports that healthy patients require a training
period of several months to achieve accuracies of 65%–80% using
slow cortical potentials in a 1-D cursor-control task [9]. Some ALS
patients have been trained for more than a year [6]. Each of these
methods requires training over weeks or months.

Another approach relying on similar components, the Graz BCI, re-
quires the computer system to “learn” to detect distinct EEG patterns
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Fig. 1. Panels A and B and the left side show the timing of the experimental
paradigm for right hand and feet movement imagery. Fig. 1, right side shows
the electrode positions (C3 and Cz in the international 10/20 system) for EEG
measurements. The head is viewed from above and the nose points to the top of
the page.

related to the imagination of movement based on EEG recordings over
the respective sensorimotor areas. When utilizing two bipolar record-
ings and either band power or adaptive autoregressive parameters, a
single EEG trial classification accuracy of 80%–97% can be achieved
after approximately 6–10 20-min sessions [3], [10], [11].

To improve the usefulness of BCI methods, researchers must ad-
dress issues of user-acceptance and training methodology. Reduction
in the total number of electrodes necessary to operate a BCI and the
length of training time should significantly improve the rate of user
acceptance and the general usefulness of BCI methods. We set out to
investigate these issues with a large group outside the laboratory. Of
interest was how many people at a public exhibition would be able to
operate an EEG-based BCI after only 20–30 min of training with only
two bipolar EEG derivations. In the same large data set, we compared
the performance of a BCI using adaptive autoregressive parameter es-
timation to band-power estimation. It must be emphasized, however,
that the short training period precludes the subject from finding the
best mental strategy to control the BCI system. Hence, in this case, it is
the system that adapts to the subjects’ EEG patterns and not the other
way around.

II. EXPERIMENTAL PARADIGM

A total of 99 people(mean age= 38� 22:4 yr) participated in the
experiment. The subjects were free of medication and central nervous
system abnormalities and had no prior experience with EEG-based
communication systems. The experiments were performed over two
months.

The BCI requires EEG trials recorded during two different types
of motor imagery. Based on experiences from previous investigations
with healthy volunteers, the subjects were asked to concentrate on
right-hand versus both-feet movement, which was expected to yield
distinct EEG patterns over the sensorimotor regions. The timing of
one trial is shown in Fig. 1.

The subjects sat in a comfortable armchair 150 cm in front of a com-
puter screen and were instructed not to move and to keep both arms and
feet relaxed. The experiments started with the display of a fixation cross
in the center of a screen. After 2 s, a warning stimulus was given in the
form of a “beep.” After 3 s, an arrow (cue stimulus) pointing to the left
or right was shown for 1.25 s. The subjects were instructed to imagine a
right-hand movement or a both-feet movement until the end of the trial,
depending on the direction of the arrow. In sessions with feedback, the
EEG patterns were detected and classified online throughout the ses-
sion. For 3.75 s after the arrow disappeared, between second 4.25 and
second 8, the classification result was used to give a continuously up-
dated feedback stimulus in form of a horizontal bar that appeared in the



center of the screen. If the person imagined a both-feet movement, the
bar—varying in length—extended to the left, as shown in Fig. 1 (A).
If the subject imagined a right-hand movement, the bar extended to the
right, as shown in Fig. 1 (B) (correct classification assumed). During
this time period, the subjects’ task was to extend the bar toward the left
or right edge of the screen.

One trial lasted 8 s and the time between two trials was randomized in
a range of 0.5–2.5 s to avoid adaptation. All 99 subjects performed one
session without feedback, and most of them (94) also performed one
session with feedback. Each session consisted of 40 trials with random-
ized cue direction (20 arrows pointing to the left and 20 to the right).
The whole experiment lasted about 20–30 min including electrode ap-
plication, breaks between sessions, and all settings for the experiment.

III. M ETHODS

The EEG was recorded with gold electrodes from two bipolar chan-
nels over the right-hand and foot representation areas (2.5-cm anterior
and 2.5-cm posterior to electrode positions C3 and Cz of the interna-
tional 10/20 electrode system) as shown in Fig. 1 (right side). The EEG
signals were amplified and band-pass filtered between 0.5 and 30 Hz
and sampled at 128 Hz. For the analysis of the EEG patterns, 1) an
adaptive autoregressive (AAR) model (first month) and 2) band power
estimation (second month) were applied.

An AAR model describes the time-varying characteristics of the
EEG. With only a small number of AAR parameters (in this case six),
the spectral EEG-signal properties can be monitored, and the param-
eters can be used to classify the EEG patterns. AAR parameters were
estimated with the recursive-least-squares (RLS) algorithm [11], [12].

For band-power estimation, the average power in the alpha and beta
band at each electrode position was estimated by 1) digitally band-pass
filtering the data in standard frequency ranges of 10–12 Hz (alpha)
and 16–20 Hz (beta), 2) squaring each sample, and 3) averaging over
several consecutive samples [3]. A total of 128 samples were averaged,
yielding an estimation of the band power for a 1-s interval.

In both cases, linear discriminant analysis (LDA) was used for the
classification of the parameters [13]. An LDA weights each input pa-
rameter according to its importance. The classification result, the sum
of weighted parameters, indicates the class to which the input belongs
by the sign of the result. The confidence that can be placed in the class
assignment is given by the magnitude of the result.

IV. PROCESSINGENVIRONMENT

The experiments were carried out using a newly developed BCI
system running in real time under Windows with a two-channel EEG
amplifier [11]. After amplification (g.BSamp), the signals were passed
to a laptop computer for data acquisition, processing, visualization,
and storage, as shown in Fig. 2. A stimulation unit (g.STIMunit)
controls experimental paradigms while a real-time processing system
(g.Rtsys) performs the data acquisition, real-time parameter extraction,
and classification of the EEG.

The system provides algorithms for offline analysis and allows inte-
grating the same algorithms for real-time processing. A key feature is
the rapid prototyping environment that enables fast and easy implemen-
tation of different processing algorithms and classification methods for
optimizing the BCI performance. The system enables us to achieve reli-
able results in an early stage of design both for development of the BCI
itself as well as for the adaptation of the system to the specific needs of
subjects/patients. The environment allows the integration of user-spe-
cific hardware and processing modules and gives access to MATLAB
and SIMULINK—Toolboxes (MathWorks Inc., Natick, MA) to accel-
erate the BCI research.

Fig. 2. Depicts the hardware and software architecture of the portable BCI
system. Subject’s EEG is amplified with g.Bsamp, then digitized and processed
in real-time with g.Rtsys. The classified EEG patterns are fed back to the subject
based on g.STIMunit. The BCI user-system #1 can be connected via personal
area network or internet to other BCI user systems.

The tight coupling between the online experiments and offline anal-
ysis of the acquired data is one of the major advantages of the new BCI
system, particularly for building the classifier. There were two types of
recording sessions: in one type, data were collected to establish a sub-
ject-specific weight vector, and in the other type, the subject-specific
weight vector was used to classify the EEG online while the subject
imagined the requested kind of movement.

In session one, the paradigm, described in Fig. 1 but without feed-
back, was presented to obtain the subject-specific weight vector. The
acquired data were then used offline to 1) estimate AAR model pa-
rameters or to 2) estimate the band power. To obtain a more general
view of the classification ability, a 10� 10 fold cross validation of a
linear discriminant was also performed. This validation mixes the data
set randomly and divides it into ten equally sized disjunctive partitions.
Each partition is then used once for testing, whereas the other partitions
are used for training. The resulting ten different error rates are averaged
yielding an overall error. To further improve the estimate the procedure
is repeated ten times and again all error rates are averaged.

The 1) AAR- or 2) band-power coefficients of the classification
time points with the lowest classification error were used to set up
the subject-specific weight vectors with the LDA for the following
sessions with feedback. This offline procedure, beginning from
reading the recorded data from hard disk until the availability of the
new weight vector, requires approximately 2 min. Therefore, the next
session can be started after only a short break.

In session two, the outputs of the algorithms were calculated and
classified with the weight vector in real time to show the feedback on-
line in form of a bar on the screen. The bar, varying in length, pointed
to the left if the output of the linear classification was positive and to
the right if it was negative. The size of the bar was determined by the
absolute value of the classification result, which represents a measure
of how reliable the side was determined.

V. RESULTS

It is interesting that in about 20% of the sessions (about 20% of
subjects), the two brain states were distinguished with an accuracy
of greater than 80% after only 20–30 min of training, as shown in
Table I. Further, 70% of the sessions were classified with an accuracy



TABLE I
PERCENTAGE OFSESSIONSWHICH WERE CLASSIFIED WITH A CERTAIN

ACCURACY FORRLS ALGORITHM AND BAND POWER (BP) ESTIMATION.
N SPECIFIES THENUMBER OF SESSIONS.RLS + BP SHOWS THE

RESULTS FORBOTH ALGORITHMS

TABLE II
PERCENTAGE OFSESSIONSWHICH WERE CLASSIFIED WITH A CERTAIN

ACCURACY FORRLS ALGORITHM AND BP ESTIMATION. N SPECIFIES

THE NUMBER OF SESSIONS. RLS + BP SHOWS THE RESULTS

FOR BOTH ALGORITHMS

of 60%–80%, and only in 6.7% was a marginal discrimination between
brain states possible (see Table I for details).

The BCI system uses two types of experimental sessions: 1) training
sessions where data are collected to set up a subject-specific classifier
(with or without feedback) and 2) sessions where the classifier is used
to classify a subject’s EEG online while motor imagery is requested
(with feedback). Table II divides the classification results into sessions
without feedback (S1) and sessions with feedback (S2) for RLS and
BP. An interesting result is that nonfeedback sessions have a higher
accuracy than feedback sessions. S1 of RLS and BP have almost the
same performance, but results for S2 differ. Feedback sessions with
BP show better results.

VI. CONCLUSION

The results presented show that a large population can perform
a BCI operation, and that a high accuracy of above 90% can be
achieved. We know from other investigations that even subjects who
have no BCI control in the first few sessions can learn the operation
by neuro-/biofeedback training [6], [14], [15].

Feedback plays an essential role in BCI skill development as
indicated by several investigations [6], [8], [11], [15]. Feedback
can be expected to improve the classification accuracy simply by
maintaining the subjects’ interest and attention. However, feedback
can also degrade performance due to insufficient attention to the
imagination or frustration caused by incorrect feedback. Especially
during their first attempts at BCI operation, subjects sometimes
get overwhelmed by the new experience of controlling a technical
device with their thoughts. It is possible that this explains why the
nonfeedback sessions gave better results than the feedback sessions.
However, the 99 subjects of this study established almost the same
results for feedback and nonfeedback sessions, although it was a
new experience for them and the experiments were performed in a
field experiment at an exposition.

Splitting the results in RLS and BP algorithms shows that both yield
to almost the same performance. BP results are slightly superior to RLS
results, however. The reason is the robust design of the band-power es-
timation that suppresses the influence of artifacts. The advantage of
using AAR parameters is that no subject-specific frequency range se-
lection, which further improves the classification results [14], is nec-
essary. However, the estimation of the AAR parameters is sensitive to
artifacts. Hence, classification results can be biased, i.e., the horizontal
feedback bar is more likely to extend in one direction than in the other
direction. To overcome this problem, more training data must be used
to set up the classifier.
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