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How Many People are Able to Operate an EEG-Based :
Brain-Computer Interface (BCI)? ]
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Abstract—Ninety-nine healthy people participated in a brain—-computer bee

interface (BCI) field study conducted at an exposition held in Graz, Austria. i vuuwm-fE | CUE |
Each subject spent 20—30 min on a two-session BCI investigation. The first et 2 3 4 5 & 7 8 timein s

session consisted of 40 trials conducted without feedback. Then, a subject-

specific classifier was set up to provide the subject with feedback, and the Fig. 1. Panels A and B and the left side show the timing of the experimental
second session—40 trials in which the subject had to control a horizontal paradigm for right hand and feet movement imagery. Fig. 1, right side shows
bar on a computer screen—was conducted. Subjects were instructed to the electrode positions (C3 and Cz in the international 10/20 system) for EEG
imagine a right-hand movement or a foot movement after a cue stimulus de- measurements. The head is viewed from above and the nose points to the top of
pending on the direction of an arrow. Bipolar electrodes were mounted over the page.

the right-hand representation area and over the foot representation area.

Classification results achieved with 1) an adaptive autoregressive model

(39 subjects) and 2) band power estimation (60 subjects) are presented. rg|ated to the imagination of movement based on EEG recordings over
Roughly 93% of the subjects were able to achieve classification accuracy the r tiv nsorimotor ar When utilizing two bipolar r rd
above 60% after two sessions of training. the respective sensorimotor areas. hen u g two bipolar recora-
Index TermsBrain_computer interface (BCI), electroencephalo ings and either band power or adaptive autoregressive parameters, a
gram (EEG), event-related desynchronization (EéD)’ motor imagery, single EEG Frlal classification accuracy of 80%—-97% can be achieved
rehabilitation. after approximately 6—10 20-min sessions [3], [10], [11].
To improve the usefulness of BCI methods, researchers must ad-
dress issues of user-acceptance and training methodology. Reduction
. INTRODUCTION in the total number of electrodes necessary to operate a BCI and the

An electroencephalogram (EEG)-based brain—-computer interfd8B0th of training time should significantly improve the rate of user
(BCI) creates a new communication channel between the human braggeptance and the general usefulness of BCl methods. We set out to
and the computer [1]-[3]. This channel may provide patients wHgvestigate these issues with a large group outside the laboratory. Of
suffer from severe motor impairments (e.g. late-stage amyotroplfiéerest was how many people at a public exhibition would be able to
lateral sclerosis (ALS), severe cerebral palsy, head trauma, #Rfratean EEG-based BCI after only 20-30 min of training with only
spinal injuries) with an alternative form of communication, where th&V0 bipolar EEG derivations. In the same large data set, we compared
interaction between brain and computer is realized in real time. the performance of a BCI using adaptive autoregressive parameter es-

Currently, more than 20 laboratories are working on communiciation to band-power estimation. It must be emphasized, however,
tion channels between the brain and the computer [4], exploring pégat the short training period precludes the subject from finding the
sible BCI input signals that include evoked potentials [5], slow cortic&eSt mental strategy to control the BCI system. Hence, in this case, itis
potentials (SCPs) [6], and oscillatory components [3], [7], [8]. Modhe system that adapts to the subjects’ EEG patterns and not the other
studies have been conducted with small subject populations (1-14§y around.
and data have mainly been used to develop systems that are highly op-
timized to the subjects participating in the studies. Subjects’ ability to Il. EXPERIMENTAL PARADIGM

control a BCI vary greatly, however, and some subjects have been ex-, - .

ry greatly, how ' ne SubJ€ A total of 99 peoplg mean age= 38 + 22.4 yr) participated in the
cluded from further investigation due to their inability to control thee eriment. The subiects were free of medication and central Nervous
BCIl in early training [4]. xperi ) ubJ w catl vou

One of the most successful BCI strategies relies on the subjec%gstem abnormalities and had no prior experience with EEG-based

ability to learn to alter the mu and central-beta components of ﬂlcgegon:]?;:nlcatlon systems. The experiments were performed over two
EEG at will. This method has resulted in accuracies of 80%—95% for : . . . .
° > The BCI requires EEG trials recorded during two different types

one-dimensional (1-D) cursor-control tasks. Wolpaw and McFarlan - . . ) Lo
: . . ieffkmotor imagery. Based on experiences from previous investigations
have shown that healthy subjects and spinal-cord-injury patients .
healthy volunteers, the subjects were asked to concentrate on

usually need several months to develop high-accuracy cursor con . i
(i.e.> 90%) using mu- and beta-frequency components [2], [7 ig _t-hand versus both-feet movement', which was expecteo! tc_) yield
Birbaumer’s group also reports that healthy patients require a trainig'sél?fglgfghgatr:e.:]n; ovir the sensorimotor regions. The timing of
period of several months to achieve accuracies of 65%—-80% usm%r lal1s shown in 7g. 1. . .

he subjects sat in a comfortable armchair 150 cm in front of a com-

slow cortical potentials in a 1-D cursor-control task [9]. Some ALS .

. . uter screen and were instructed not to move and to keep both arms and
patients have been trained for more than a year [6]. Each of th ggt relaxed. The experiments started with the display of a fixation cross
methods requires training over weeks or months. ) P play

Another approach relying on similar components, the Graz BClI, ran_the cen‘:[er of a: screen. After 2, awarning sﬂmulus_ was given in the

. " ” . orm of a “beep.” After 3 s, an arrow (cue stimulus) pointing to the left

quires the computer system to “learn” to detect distinct EEG patterns . : ) . :
orright was shown for 1.25 s. The subjects were instructed to imagine a
right-hand movement or a both-feet movement until the end of the trial,
depending on the direction of the arrow. In sessions with feedback, the
EEG patterns were detected and classified online throughout the ses-
sion. For 3.75 s after the arrow disappeared, between second 4.25 and
second 8, the classification result was used to give a continuously up-

dated feedback stimulus in form of a horizontal bar that appeared in the




center of the screen. If the person imagined a both-feet movement,t  user-system #1
bar—varying in length—extended to the left, as shown in Fig. 1 (A)

If the subjectimagined a right-hand movement, the bar extended to tl .RTsys real-time system
right, as shown in Fig. 1 (B) (correct classification assumed). Durin; Patient -

this time period, the subjects’ task was to extend the bar toward the le
or right edge of the screen. oty [

One trial lasted 8 s and the time between two trials was randomized o St
arange of 0.5-2.5 s to avoid adaptation. All 99 subjects performed ol e e
session without feedback, and most of them (94) also performed o Espeamee
session with feedback. Each session consisted of 40 trials with rando
ized cue direction (20 arrows pointing to the left and 20 to the right) o eee—

The whole experiment lasted about 20-30 min including electrode a Kimitaoy e
plication, breaks between sessions, and all settings for the experime

I1l. M ETHODS User-System #2 Personal Area Network (PAN) ’
control unit

The EEG was recorded with gold electrodes from two bipolar char
nels over the right-hand and foot representation areas (2.5-cm anterior ) )
and 2.5-cm posterior to electrode positions C3 and Cz of the interdag- 2. Depicts the hardware and software architecture of the portable BCI

. - . . tem. Subject’'s EEG is amplified with g.Bsamp, then digitized and processed
tional 10/20 electrode system) as shown in Fig. 1 (right side). The EE(Ze| ime with g.Rtsys. The classified EEG patterns are fed back to the subject

signals were amplified and band-pass filtered between 0.5 and 30 #4ged on g.STIMunit. The BCI user-system #1 can be connected via personal
and sampled at 128 Hz. For the analysis of the EEG patterns, 1)aaea network or internet to other BCI user systems.

adaptive autoregressive (AAR) model (first month) and 2) band power

estimation (second month) were applied. ) ) ) ) )
An AAR model describes the time-varying characteristics of the The tight coupling between the online experiments and offline anal-

EEG. With only a small number of AAR parameters (in this case sixySis Of the acquired data is one of the major advantages of the new BCI
the spectral EEG-signal properties can be monitored, and the par&¥tem. particularly for building the classifier. There were two types of
eters can be used to classify the EEG patterns. AAR parameters w&@rding sessions: in one type, data were collected to establish a sub-
estimated with the recursive-least-squares (RLS) algorithm [11], [13§ct-specific weight vector, and in the other type, the subject-specific
For band-power estimation, the average power in the alpha and b¥g{ght vector was used to classify the EEG online while the subject
band at each electrode position was estimated by 1) digitally band-p{8&gined the requested kind of movement. _
filtering the data in standard frequency ranges of 10-12 Hz (alpha)n S€ssion one, the paradigm, described in Fig. 1 but without feed-
and 16-20 Hz (beta), 2) squaring each sample, and 3) averaging mk’_ was presented to obtain the-SUbjeCt-Spe(-ZlfIC weight vector. The
several consecutive samples [3]. A total of 128 samples were averagifluired data were then used offline to 1) estimate AAR model pa-
yielding an estimation of the band power for a 1-s interval. rameters or to 2) estimate the band power. To obtain a more general
In both cases, linear discriminant analysis (LDA) was used for théeW Of the classification ability, a 1& 10 fold cross validation of a
classification of the parameters [13]. An LDA weights each input pAn€ar discriminant was also performed. This validation mixes the data
rameter according to its importance. The classification result, the sf randomly and divides itinto ten equally sized disjunctive partitions.
of weighted parameters, indicates the class to which the input belor@o‘”“h partition is then used once for testing, whereas the other partitions

by the sign of the result. The confidence that can be placed in the cl858 used for training. The resulting ten different error rates are averaged
assignment is given by the magnitude of the result. yielding an overall error. To further improve the estimate the procedure

is repeated ten times and again all error rates are averaged.
The 1) AAR- or 2) band-power coefficients of the classification
IV. PROCESSINGENVIRONMENT time points with the lowest classification error were used to set up
ae subject-specific weight vectors with the LDA for the following

system running in real time under Windows with a two-channel EEG >o0NS with feedback. This offline procedure, beginning from

amplifier [11]. After amplification (g.BSamp), the signals were passerc?ading the recorded data from hard disk until the availability of the

to a laptop computer for data acquisition, processing, visualizatio'?1e,W weight vector, requires approximately 2 min. Therefore, the next

and storage, as shown in Fig. 2. A stimulation unit (g.STIMunit?eS'Slon can bte statrrt]ed afttertonl); zt;\hsholrt br.fr?k' lculated and
controls experimental paradigms while a real-time processing syste n session two, the outpuls of tne algorithms were caicu'ated an

(g.Rtsys) performs the data acquisition, real-time parameter extractiﬁ ’s§|f|ed with the weight vector inreal time to show _the feedbacl_< on-
and classification of the EEG. iné in form of a bar on the screen. The bar, varying in length, pointed
o the left if the output of the linear classification was positive and to

Th t id Igorithms for offli lysis and all inte- ~ 7 . . .
© System provides aigorifims for Oine analysis and aflows in the right if it was negative. The size of the bar was determined by the

grating the same algorithms for real-time processing. A key feature’j s .
the rapid prototyping environment that enables fast and easyimplemgﬁ-some value of the classification result, which represents a measure
how reliable the side was determined.

tation of different processing algorithms and classification methods for
optimizing the BCI performance. The system enables us to achieve reli-
able results in an early stage of design both for development of the BCI
itself as well as for the adaptation of the system to the specific needs of
subjects/patients. The environment allows the integration of user-spek is interesting that in about 20% of the sessions (about 20% of
cific hardware and processing modules and gives access to MATLABDjects), the two brain states were distinguished with an accuracy
and SIMULINK—Toolboxes (MathWorks Inc., Natick, MA) to accel-of greater than 80% after only 20—30 min of training, as shown in
erate the BCI research. Table I. Further, 70% of the sessions were classified with an accuracy

The experiments were carried out using a newly developed B

V. RESULTS



TABLE |
PERCENTAGE OFSESSIONSWHICH WERE CLASSIFIED WITH A CERTAIN

ACCURACY FORRLS ALGORITHM AND BAND POWER (BP) ESTIMATION.

N SPECIFIES THENUMBER OF SESSIONSRLS + BP SHOwS THE
RESULTS FORBOTH ALGORITHMS

Classification RLS BP RLS+BP
Accuracy in  Percentage Percentage Percentage
% of Sessions  of Sessions  of Sessions
(N=76) (N=117) (N=193)
90-100 6.6 6.0 6.2
80-89 10.5 14.5 13.0
70-79 30.3 333 32.1
60-69 40.8 42.7 42.0
50-59 11.8 35 6.7
100 100 100
TABLE I

Feedback plays an essential role in BCI skill development as
indicated by several investigations [6], [8], [11], [15]. Feedback
can be expected to improve the classification accuracy simply by
maintaining the subjects’ interest and attention. However, feedback
can also degrade performance due to insufficient attention to the
imagination or frustration caused by incorrect feedback. Especially
during their first attempts at BCI operation, subjects sometimes
get overwhelmed by the new experience of controlling a technical
device with their thoughts. It is possible that this explains why the
nonfeedback sessions gave better results than the feedback sessions.
However, the 99 subjects of this study established almost the same
results for feedback and nonfeedback sessions, although it was a
new experience for them and the experiments were performed in a
field experiment at an exposition.

Splitting the results in RLS and BP algorithms shows that both yield
to almost the same performance. BP results are slightly superior to RLS
results, however. The reason is the robust design of the band-power es-
timation that suppresses the influence of artifacts. The advantage of
using AAR parameters is that no subject-specific frequency range se-
lection, which further improves the classification results [14], is nec-
essary. However, the estimation of the AAR parameters is sensitive to
artifacts. Hence, classification results can be biased, i.e., the horizontal

PERCENTAGE OFSESSIONSWHICH WERE CLASSIFIED WITH A CERTAIN
ACCURACY FORRLS ALGORITHM AND BP ESTIMATION. N SPECIFIES
THE NUMBER OF SESSIONS RLS + BP SHOwS THE RESULTS
FOR BOTH ALGORITHMS

Classification RLS BP
Accuracy in Percenta Percentage Percentage Percentage [1]
% ge of of Sessions  of Sessions of Sessions 2]
Sessions S2 S1 S2
S1 (N=37) (N=60) (N=57) 3]
(N=39)
90-100 10.3 4.1 8.3 7.3
80-89 10.3 8.9 14.6 13.5 (4l
70-79 38.5 22.8 39.6 26.2 (5]
60-69 35.8 44.9 35.4 45.7
50-59 5.1 193 21 73 [6]
100 100 100 100
(7]

of 60%—80%, and only in 6.7% was a marginal discrimination between 8]
brain states possible (see Table | for details).

The BCI system uses two types of experimental sessions: 1) trainin%
sessions where data are collected to set up a subject-specific classifi ?
(with or without feedback) and 2) sessions where the classifier is used
to classify a subject’'s EEG online while motor imagery is requested
(with feedback). Table Il divides the classification results into session§L0]
without feedback (S1) and sessions with feedback (S2) for RLS and
BP. An interesting result is that nonfeedback sessions have a higher
accuracy than feedback sessions. S1 of RLS and BP have almost tf1e]
same performance, but results for S2 differ. Feedback sessions with
BP show better results. [12]

VI. CONCLUSION [13]

The results presented show that a large population can perforii4]
a BCI operation, and that a high accuracy of above 90% can be
achieved. We know from other investigations that even subjects wh
have no BCI control in the first few sessions can learn the operation
by neuro-/biofeedback training [6], [14], [15].

feedback bar is more likely to extend in one direction than in the other
direction. To overcome this problem, more training data must be used
to set up the classifier.
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